Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Tuberc Lung Dis ; 28(4): 195-201, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563340

RESUMO

In Togo, the COVID-19 pandemic paved the way for decentralising directly observed treatment (DOT) to the community level through the evaluation of two innovative community-based DOT approaches-a community health worker-based (CHW-DOT) and family-based (FB-DOT). METHODS We conducted an observational prospective study from April 2021 to January 2022. Sputum conversion at Month 2 and favourable treatment outcomes at Month 6 were assessed and compared between the two groups. Sociodemographic and clinical factors related to these outcomes were identified. RESULTS A total of 182 TB patients were enrolled. The CHW-DOT group had significantly increased odds of sputum conversion (aOR 2.95, 95% CI 1.09-7.98) and lower odds of unsuccessful treatment outcomes (aOR 0.37, 95% CI 0.13-1.1). Non-smokers had 4.85 higher odds of converting than smokers (aOR 4.85, 95% CI 1.76-13.42) and lower odds of an unsuccessful treatment than smokers (aOR 0.11, 95% CI 0.04-0.32). CONCLUSION CHW-DOT is associated with higher sputum smear conversion rates and a more favourable treatment outcome. The use of tobacco, significantly associated with outcomes, also suggests that a smoking cessation component may be a valuable adjunct to a CHW-DOT approach during TB treatment..


Assuntos
Tuberculose , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Estudos Prospectivos , Togo/epidemiologia , Pandemias , Resultado do Tratamento , Instalações de Saúde , Antituberculosos/uso terapêutico
2.
Sci Rep ; 13(1): 10622, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391534

RESUMO

Tumor necrosis factor alpha (TNF-α) and its key role in modulating immune responses has been widely recognized as a therapeutic target for inflammatory and neurodegenerative diseases. Even though inhibition of TNF-α is beneficial for the treatment of certain inflammatory diseases, total neutralization of TNF-α largely failed in the treatment of neurodegenerative diseases. TNF-α exerts distinct functions depending on interaction with its two TNF receptors, whereby TNF receptor 1 (TNFR1) is associated with neuroinflammation and apoptosis and TNF receptor 2 (TNFR2) with neuroprotection and immune regulation. Here, we investigated the effect of administering the TNFR1-specific antagonist Atrosimab, as strategy to block TNFR1 signaling while maintaining TNFR2 signaling unaltered, in an acute mouse model for neurodegeneration. In this model, a NMDA-induced lesion that mimics various hallmarks of neurodegenerative diseases, such as memory loss and cell death, was created in the nucleus basalis magnocellularis and Atrosimab or control protein was administered centrally. We showed that Atrosimab attenuated cognitive impairments and reduced neuroinflammation and neuronal cell death. Our results demonstrate that Atrosimab is effective in ameliorating disease symptoms in an acute neurodegenerative mouse model. Altogether, our study indicates that Atrosimab may be a promising candidate for the development of a therapeutic strategy for the treatment of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa , Doenças Neurodegenerativas/tratamento farmacológico
3.
Dose Response ; 16(4): 1559325818811756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574028

RESUMO

The biological consequences of mechanical whole body vibration (WBV) on the brain are not well documented. The aim of the current study was to further investigate the effects of a 5-week WBV intervention on brain functions. Mice (C57Bl/6J males, age 15 weeks) were exposed to 30 Hz WBV sessions (10 minutes per day, 5 days per week, for a period of 5 weeks; n = 10). Controls received the same intervention without the actual vibration (n = 10). Humans (both genders, age ranging from 44-99 years) were also exposed to daily sessions of 30 Hz WBV (4 minutes per day, 4 days per week, for a period of 5 weeks; n = 18). Controls received the same protocol using a 1 Hz protocol (n = 16). Positron emission tomography imaging was performed in the mice, and revealed that glucose uptake was not changed as a consequence of the 5-week WBV intervention. Whole body vibration did, however, improve motor performance and reduced arousal-induced home cage activity. Cognitive tests in humans revealed a selective improvement in the Stroop Color-Word test. Taken together, it is concluded that WBV is a safe intervention to improve brain functioning, although the subtle effects suggest that the protocol is as yet suboptimal.

4.
J Neuroinflammation ; 15(1): 330, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30501637

RESUMO

BACKGROUND: Lipocalin 2 (Lcn2) is an acute-phase protein implicated in multiple neurodegenerative conditions. Interestingly, both neuroprotective and neurodegenerative effects have been described for Lcn2. Increased Lcn2 levels were found in human post-mortem Alzheimer (AD) brain tissue, and in vitro studies indicated that Lcn2 aggravates amyloid-ß-induced toxicity. However, the role of Lcn2 has not been studied in an in vivo AD model. Therefore, in the current study, the effects of Lcn2 were studied in the J20 mouse model of AD. METHODS: J20 mice and Lcn2-deficient J20 (J20xLcn2 KO) mice were compared at the behavioral and neuropathological level. RESULTS: J20xLcn2 KO and J20 mice presented equally strong AD-like behavioral changes, cognitive impairment, plaque load, and glial activation. Interestingly, hippocampal iron accumulation was significantly decreased in J20xLcn2 KO mice as compared to J20 mice. CONCLUSIONS: Lcn2 contributes to AD-like brain iron dysregulation, and future research should further explore the importance of Lcn2 in AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/etiologia , Regulação da Expressão Gênica/genética , Ferro/metabolismo , Lipocalina-2/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Lipocalina-2/genética , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/etiologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Neuroglia/patologia , Fosfopiruvato Hidratase/metabolismo , Placa Amiloide/etiologia , Placa Amiloide/metabolismo
5.
J Nucl Med ; 58(11): 1743-1748, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28705918

RESUMO

The estrogen receptor (ER) is a target for endocrine therapy in breast cancer patients. Individual quantification of ERα and ERß expression, rather than total ER levels, might enable better prediction of the response to treatment. We recently developed the tracer 2-18F-fluoro-6-(6-hydroxynaphthalen-2-yl)pyridin-3-ol (18F-FHNP) for assessment of ERß levels with PET. In the current study, we investigated several pharmacokinetic analysis methods to quantify changes in ERß availability with 18F-FHNP PET. Methods: Male nude rats were subcutaneously inoculated in the shoulder with ERα/ERß-expressing SKOV3 human ovarian cancer cells. Two weeks after tumor inoculation, a dynamic 18F-FHNP PET scan with arterial blood sampling was acquired from rats treated with vehicle or various concentrations of estradiol (nonspecific ER agonist) or genistein (ERß-selective agonist). Different pharmacokinetic models were applied to quantify ERß availability in the tumor. Results: Irreversible-uptake compartmental models fitted the kinetics of 18F-FHNP uptake better than reversible models. The irreversible 3-tissue-compartment model, which included both the parent and the metabolite input function, gave results comparable to those of the irreversible 2-tissue-compartment model with only a parent input function, indicating that radioactive metabolites contributed little to the tumor uptake. Patlak graphical analysis gave metabolic rates (Ki, the irreversible uptake rate constant) comparable to compartment modeling. The Ki values correlated well with ERß expression but not with ERα, confirming that Ki is a suitable parameter to quantify ERß expression. SUVs at 60 min after tracer injection also correlated (r2 = 0.47; P = 0.04) with ERß expression. A reduction in 18F-FHNP tumor uptake and Ki values was observed in the presence of estradiol or genistein. Conclusion:18F-FHNP PET enables assessment of ERß availability in tumor-bearing rats. The most suitable parameter to quantify ERß expression is the Ki However, a simplified static imaging protocol for determining the SUVs can be applied to assess ERß levels.


Assuntos
Receptor beta de Estrogênio/biossíntese , Naftóis/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Linhagem Celular Tumoral , Estradiol/farmacocinética , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Feminino , Genisteína/farmacocinética , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Estatísticos , Neoplasias Ovarianas/diagnóstico por imagem , Ratos , Ratos Nus , Reprodutibilidade dos Testes
6.
J Comp Physiol B ; 187(5-6): 725-734, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28324158

RESUMO

Research on deep hibernators almost exclusively uses species captured from the wild or from local breeding. An exception is Syrian hamster (Mesocricetus auratus), the only standard laboratory animal showing deep hibernation. In deep hibernators, several factors influence hibernation quality, including body mass, sex and diet. We examined hibernation quality in commercially obtained Syrian hamsters in relation to body mass, sex and a diet enriched in polyunsaturated fatty acids. Animals (M/F:30/30, 12 weeks of age) were obtained from Harlan (IN, USA) and individually housed at 21 °C and L:D 14:10 until 20 weeks of age, followed by L:D 8:16 until 27 weeks. Then conditions were changed to 5 °C and L:D 0:24 for 9 weeks to induce hibernation. Movement was continuously monitored with passive infrared detectors. Hamsters were randomized to control diet or a diet 3× enriched in linoleic acid from 16 weeks of age. Hamsters showed a high rate of premature death (n = 24, 40%), both in animals that did and did not initiate torpor, which was unrelated to body weight, sex and diet. Time to death (31.7 ± 3.1 days, n = 12) or time to first torpor bout (36.6 ± 1.6 days, n = 12) was similar in prematurely deceased hamsters. Timing of induction of hibernation and duration of torpor and arousal was unaffected by body weight, sex or diet. Thus, commercially obtained Syrian hamsters subjected to winter conditions showed poor survival, irrespective of body weight, sex and diet. These factors also did not affect hibernation parameters. Possibly, long-term commercial breeding from a confined genetic background has selected against the hibernation trait.


Assuntos
Animais de Laboratório/fisiologia , Hibernação/fisiologia , Mesocricetus/fisiologia , Animais , Peso Corporal , Dieta , Ácidos Graxos Insaturados/farmacologia , Feminino , Masculino
7.
Antioxid Redox Signal ; 27(9): 599-617, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28322600

RESUMO

SIGNIFICANCE: Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES: Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS: Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.


Assuntos
Hibernação , Rim/metabolismo , Mitocôndrias/metabolismo , Adaptação Fisiológica , Animais , Antioxidantes/metabolismo , Temperatura Baixa , Humanos , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais
8.
PLoS One ; 10(8): e0136113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295351

RESUMO

BACKGROUND: Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called 'torpor' without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5'-Adenosine monophosphate (5'-AMP). The mechanism by which 5'-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. METHODS: To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5'-AMP, additional animals were injected with AOAA during torpor. KEY RESULTS: During the torpor-like state induced by 5'-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. CONCLUSIONS: Induction of a torpor-like state by 5'-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5'-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery.


Assuntos
Monofosfato de Adenosina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Torpor , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/metabolismo , Ácido Amino-Oxiacético/farmacologia , Animais , Creatina/sangue , Creatina/metabolismo , Cricetinae , Sulfeto de Hidrogênio/antagonistas & inibidores , Sulfeto de Hidrogênio/sangue , Hipotermia Induzida , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Mesocricetus , Torpor/efeitos dos fármacos
9.
PLoS One ; 9(4): e93218, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722364

RESUMO

Hibernation is an energy-conserving behavior in winter characterized by two phases: torpor and arousal. During torpor, markedly reduced metabolic activity results in inactivity and decreased body temperature. Arousal periods intersperse the torpor bouts and feature increased metabolism and euthermic body temperature. Alterations in physiological parameters, such as suppression of hemostasis, are thought to allow hibernators to survive periods of torpor and arousal without organ injury. While the state of torpor is potentially procoagulant, due to low blood flow, increased viscosity, immobility, hypoxia, and low body temperature, organ injury due to thromboembolism is absent. To investigate platelet dynamics during hibernation, we measured platelet count and function during and after natural torpor, pharmacologically induced torpor and forced hypothermia. Splenectomies were performed to unravel potential storage sites of platelets during torpor. Here we show that decreasing body temperature drives thrombocytopenia during torpor in hamster with maintained functionality of circulating platelets. Interestingly, hamster platelets during torpor do not express P-selectin, but expression is induced by treatment with ADP. Platelet count rapidly restores during arousal and rewarming. Platelet dynamics in hibernation are not affected by splenectomy before or during torpor. Reversible thrombocytopenia was also induced by forced hypothermia in both hibernating (hamster) and non-hibernating (rat and mouse) species without changing platelet function. Pharmacological torpor induced by injection of 5'-AMP in mice did not induce thrombocytopenia, possibly because 5'-AMP inhibits platelet function. The rapidness of changes in the numbers of circulating platelets, as well as marginal changes in immature platelet fractions upon arousal, strongly suggest that storage-and-release underlies the reversible thrombocytopenia during natural torpor. Possibly, margination of platelets, dependent on intrinsic platelet functionality, governs clearance of circulating platelets during torpor.


Assuntos
Plaquetas/citologia , Hipotermia Induzida , Torpor , Difosfato de Adenosina/química , Animais , Nível de Alerta/fisiologia , Temperatura Corporal , Cricetinae , Feminino , Hibernação , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo , Ratos , Ratos Wistar , Estações do Ano , Trombocitopenia/fisiopatologia , Fatores de Tempo
10.
J Leukoc Biol ; 94(3): 431-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766528

RESUMO

Hibernation consists of periods of low metabolism, called torpor, interspersed by euthermic arousal periods. During deep and daily (shallow) torpor, the number of circulating leukocytes decreases, although circulating cells, is restored to normal numbers upon arousal. Here, we show that neutropenia, during torpor, is solely a result of lowering of body temperature, as a reduction of circulating also occurred following forced hypothermia in summer euthermic hamsters and rats that do not hibernate. Splenectomy had no effect on reduction in circulating neutrophils during torpor. Margination of neutrophils to vessel walls appears to be the mechanism responsible for reduced numbers of neutrophils in hypothermic animals, as the effect is inhibited by pretreatment with dexamethasone. In conclusion, low body temperature in species that naturally use torpor or in nonhibernating species under forced hypothermia leads to a decrease of circulating neutrophils as a result of margination. These findings may be of clinical relevance, as they could explain, at in least part, the benefits and drawbacks of therapeutic hypothermia as used in trauma patients and during major surgery.


Assuntos
Temperatura Corporal , Hibernação/fisiologia , Neutrófilos/fisiologia , Animais , Cricetinae , Feminino , Masculino , Mesocricetus , Ratos , Ratos Wistar , Baço/fisiologia
11.
J Leukoc Biol ; 94(1): 89-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23682128

RESUMO

Natural hibernation consists of torpid phases with metabolic suppression alternating with euthermic periods. Induction of torpor holds substantial promise in various medical conditions, including trauma, major surgery, and transplantation. Torpor in mice can be induced pharmacologically by 5'-AMP. Previously, we showed that during natural torpor, the reduction in body temperature results in lymphopenia via a reduction in plasma S1P. Here, we show that during torpor induced by 5'-AMP, there is a similar reduction in the number of circulating lymphocytes that is a result of their retention in secondary lymphoid organs. This lymphopenia could be mimicked by engagement of A(2B)Rs by a selective A(2B)R agonist (LUF6210) in the absence of changes in temperature and prevented by A(2B)R antagonists during 5'-AMP-induced torpor. In addition, forced cooling of mice led to peripheral blood lymphopenia, independent of A(2B)R signaling. The induction of torpor using 5'-AMP impacted the migration of lymphocytes within and between secondary lymphoid organs. During torpor, the homing into LNs was impaired, and two-photon intravital microscopy revealed that cell motility was decreased significantly and rapidly upon 5'-AMP administration. Furthermore, the S1P plasma concentration was reduced by 5'-AMP but not by LUF6210. S1P plasma levels restored upon arousal. Likely, the reduced migration in LNs combined with the reduced S1P plasma level substantially reduces lymphocyte egress after injection of 5'-AMP. In conclusion, 5'-AMP induces a state of pharmacological torpor in mice, during which, lymphopenia is governed primarily by body temperature-independent suppression of lymphocyte egress from LNs.


Assuntos
Monofosfato de Adenosina/farmacologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Cálcio/metabolismo , Hibernação/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfopenia/etiologia , Receptor A2B de Adenosina/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Citometria de Fluxo , Hibernação/fisiologia , Linfopenia/patologia , Camundongos , Camundongos Endogâmicos C57BL
12.
J Exp Biol ; 215(Pt 16): 2912-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22837466

RESUMO

During hibernation, small mammals alternate between periods of metabolic suppression and low body temperature ('torpor') and periods of full metabolic recovery with euthermic temperatures ('arousal'). Previously, we demonstrated marked structural remodeling of the lung during torpor, which is rapidly reversed during arousal. We also found that cooling of hamster cells increased endogenous production of H(2)S through the enzyme cystathionine-ß-synthase (CBS). H(2)S suppresses the immune response and increases deposition of collagen. Therefore, we examined inflammatory markers and matrix metalloproteinase (MMP) activity in relation to CBS expression and H(2)S levels in lungs of euthermic and hibernating Syrian hamsters. Lung remodeling during torpor was confirmed by a strong increase in both collagenous and non-collagenous hydroxyproline content. The number of leukocytes in lung was unchanged in any phase of hibernation, while adhesion molecules VCAM-1 and ICAM-1, and the inflammatory marker NF-κB (P65) were modestly upregulated in torpor. Gelatinase activity was decreased in lungs from torpid animals, indicating inhibition of the Zn(2+)-dependent MMP-2 and MMP-9. Moreover, expression of CBS and tissue levels of H(2)S were increased in torpor. All changes normalized during arousal. Inhibition of gelatinase activity in torpor is likely caused by quenching of Zn(2+) by the sulphide ion of H(2)S. In accord, inhibition of CBS normalized gelatinase activity in torpid animals. Conversely, NaHS decreased the gelatinase activity of euthermic animals, which was attenuated by excess Zn(2+). Similar results were obtained on the activity of the Zn(2+)-dependent angiotensin converting enzyme. Our data indicate that increased production of H(2)S through CBS in hamster lungs during torpor contributes to remodeling by inhibition of gelatinase activity and possibly by suppression of the inflammatory response. Although administration of H(2)S is known to induce metabolic suppression in non-hibernating mammals ('suspended animation'), this is the first report implying endogenous H(2)S production in natural hibernation.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Hibernação/fisiologia , Sulfeto de Hidrogênio/metabolismo , Pulmão/fisiopatologia , Mesocricetus/fisiologia , Animais , Biomarcadores/metabolismo , Colágeno/metabolismo , Cricetinae , Cistationina beta-Sintase/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Gelatinases/metabolismo , Hidroxiprolina/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Pulmão/enzimologia , Pulmão/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Modelos Biológicos , Peptidil Dipeptidase A/metabolismo
13.
PLoS One ; 6(3): e17527, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21479166

RESUMO

Nocturnal rodents show diurnal food anticipatory activity when food access is restricted to a few hours in daytime. Timed food access also results in reduced food intake, but the role of food intake in circadian organization per se has not been described. By simulating natural food shortage in mice that work for food we show that reduced food intake alone shifts the activity phase from the night into the day and eventually causes nocturnal torpor (natural hypothermia). Release into continuous darkness with ad libitum food, elicits immediate reversal of activity to the previous nocturnal phase, indicating that the classical circadian pacemaker maintained its phase to the light-dark cycle. This flexibility in behavioral timing would allow mice to exploit the diurnal temporal niche while minimizing energy expenditure under poor feeding conditions in nature. This study reveals an intimate link between metabolism and mammalian circadian organization.


Assuntos
Escuridão , Comportamento Alimentar/fisiologia , Fotoperíodo , Trabalho/fisiologia , Animais , Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Masculino , Camundongos , Recompensa
14.
J Exp Biol ; 214(Pt 8): 1276-82, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21430204

RESUMO

During hibernation, small rodents such as hamsters cycle through phases of strongly suppressed metabolism with low body temperature (torpor) and full restoration of metabolism and body temperature (arousal). Remarkably, the repetitive stress of cooling-rewarming and hypoxia does not cause irreversible organ damage. To identify adaptive mechanisms protecting the lungs, we assessed histological changes as well as the expression and localization of proteins involved in tissue remodeling in lungs from Syrian hamsters at different phases of hibernation using immunohistochemical staining and western blot analysis. In torpor (early and late) phase, a reversible increased expression of smooth muscle actin, collagen, angiotensin converting enzyme and transforming growth factor-ß was found, whereas expression of the epidermal growth factor receptor and caveolin-1 was low. Importantly, all these alterations were restored during arousal. This study demonstrates substantial alterations in protein expression mainly in epithelial cells of lungs from hibernating Syrian hamsters. These structural changes of the bronchial airway structure are termed airway remodeling and often occur in obstructive lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis. Unraveling the molecular mechanism leading to reversal of airway remodeling by the end of torpor may identify possible therapeutic targets to reduce progression of this process in patients suffering from asthma, chronic obstructive pulmonary disease and lung fibrosis.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Hibernação/fisiologia , Pulmão/anatomia & histologia , Pulmão/fisiologia , Mesocricetus/anatomia & histologia , Mesocricetus/fisiologia , Animais , Caveolina 1/metabolismo , Colágeno/metabolismo , Cricetinae , Receptores ErbB/metabolismo , Feminino , Humanos , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Masculino
15.
Proc Natl Acad Sci U S A ; 108(5): 2052-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245336

RESUMO

Hibernation is an energy-conserving behavior consisting of periods of inhibited metabolism ('torpor') with lowered body temperature. Torpor bouts are interspersed by arousal periods, in which metabolism increases and body temperature returns to euthermia. In deep torpor, the body temperature typically decreases to 2-10 °C, and major physiological and immunological changes occur. One of these alterations constitutes an almost complete depletion of circulating lymphocytes that is reversed rapidly upon arousal. Here we show that torpor induces the storage of lymphocytes in secondary lymphoid organs in response to a temperature-dependent drop in plasma levels of sphingosine-1-phosphate (S1P). Regulation of lymphocyte numbers was mediated through the type 1 S1P receptor (S1P(1)), because administration of a specific antagonist (W146) during torpor (in a Syrian hamster at ∼8 °C) precluded restoration of lymphocyte numbers upon subsequent arousal. Furthermore, S1P release from erythrocytes via ATP-binding cassette (ABC)-transporters was significantly inhibited at low body temperature (4 °C) but was restored upon rewarming. Reversible lymphopenia also was observed during daily torpor (in a Djungarian hamster at ± 25 °C), during forced hypothermia in anesthetized (summer-active) hamsters (at ± 9 °C), and in a nonhibernator (rat at ∼19 °C). Our results demonstrate that lymphopenia during hibernation in small mammals is driven by body temperature, via altered plasma S1P levels. S1P is recognized as an important bioactive lipid involved in regulating several other physiological processes as well and may be an important factor regulating additional physiological processes in hibernation as well as in mediating the effects of therapeutic hypothermia in patients.


Assuntos
Regulação da Temperatura Corporal , Hibernação , Depleção Linfocítica , Linfócitos/citologia , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados , Animais , Cricetinae , Lisofosfolipídeos/sangue , Mesocricetus , Esfingosina/sangue , Esfingosina/fisiologia
16.
Biol Lett ; 6(1): 132-5, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19710051

RESUMO

Many animal species employ natural hypothermia in seasonal (hibernation) and daily (torpor) strategies to save energy. Facultative daily torpor is a typical response to fluctuations in food availability, but the relationship between environmental quality, foraging behaviour and torpor responses is poorly understood. We studied body temperature responses of outbred ICR (CD-1) mice exposed to different food reward schedules, simulating variation in habitat quality. Our main comparison was between female mice exposed to low foraging-cost environments and high-cost environments. As controls, we pair-fed a group of inactive animals (no-cost treatment) the same amount of pellets as high-cost animals. Mice faced with high foraging costs were more likely to employ torpor than mice exposed to low foraging costs, or no-cost controls (100% versus 40% and 33% of animals, respectively). While resting-phase temperature showed a non-significant decrease in high-cost animals, torpor was not associated with depressions in active-phase body temperature. These results demonstrate (i) that mice show daily torpor in response to poor foraging conditions; (ii) that torpor incidence is not attributable to food restriction alone; and (iii) that high levels of nocturnal activity do not preclude the use of daily torpor as an energy-saving strategy. The finding that daily torpor is not restricted to conditions of severe starvation puts torpor in mice in a more fundamental ecological context.


Assuntos
Comportamento Apetitivo/fisiologia , Regulação da Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Camundongos Endogâmicos ICR/fisiologia , Animais , Temperatura Corporal , Ecossistema , Feminino , Modelos Lineares , Camundongos
17.
J Sleep Res ; 18(1): 3-10, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19021858

RESUMO

The regulation of the timing of sleep is thought to be linked to the temporal dynamics of slow-wave activity [SWA, electroencephalogram (EEG) spectral power in the approximately 0.75-4.5 Hz range] in the cortical non-rapid eye movement (NREM) sleep EEG. In the two-process model of sleep regulation, SWA was used as a direct indication of sleep debt, or Process S. Originally, estimation of the latter was performed in a gross way, by measuring average SWA across NREM-REM sleep cycles, fitting an exponential curve to the values thus obtained and estimating its time constant. In later studies, SWA was assumed to be proportional to the instantaneous decay rate of Process S, rather than taken as a direct reflection of S. Following up on this, we extended the existing model of SWA dynamics in which the effects of intrusions of REM sleep and wakefulness were incorporated. For each subject, a 'gain constant' can be estimated that quantifies the efficiency of SWA in dissipating S. As the course of SWA is variable across cortical locations, local differences are likely to exist in the rate of discharge of S, eventually leading to different levels of S in different cortical regions. In this study, we estimate the extent of local differences of SWA regulation on the basis of the extended model of SWA dynamics, for 26 locations on the scalp. We observed higher efficiency of SWA in dissipation of S in frontal EEG derivations, suggesting that SWA regulation has a clear local aspect. This result further suggests that the process involved in (local) SWA regulation cannot be identical to the Process S involved (with Process C) in effectual determination of sleep timing - a single behaviour that cannot vary between locations on the scalp. We therefore propose to distinguish these two representations and characterize the former, purely SWA-related, as 'Process Z', which then is different for different locations on the scalp. To demonstrate those differences, we compare the gain constants derived for the medial EEG derivations (Fz, Cz, Pz, Oz) with each other and with the decay rate derived from SWA values per NREM-REM sleep cycle.


Assuntos
Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Sono/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Ritmo Circadiano/fisiologia , Eletroencefalografia/estatística & dados numéricos , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Modelos Teóricos , Estimulação Luminosa , Valores de Referência , Sono REM/fisiologia , Vigília/fisiologia , Adulto Jovem
18.
Eur J Neurosci ; 25(1): 69-80, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17241268

RESUMO

Neurofibrillar tangles made up of 'paired helical filaments' (PHFs) consisting of hyperphosphorylated microtubule-associated protein tau are major hallmarks of Alzheimer's disease (AD). Tangle formation selectively affects certain neuronal types and systematically progresses throughout numerous brain areas, which reflects a hierarchy of neuronal vulnerability and provides the basis for the neuropathological staging of disease severity. Mechanisms underlying this selective neuronal vulnerability are unknown. We showed previously that reversible PHF-like phosphorylation of tau occurs during obligate hibernation. Here we extend these findings to facultative hibernators such as Syrian hamsters (Mesocricetus auratus) forced into hibernation. In this model, we showed in the basal forebrain projection system that cholinergic neurons are selectively affected by PHF-like phosphorylated tau, while gamma-aminobutyric acid (GABA)ergic neurons are largely spared, which shows strong parallels to the situation in AD. Formation of PHF-tau in these neurons apparently does not affect their function as pacemaker for terminating hibernation. We conclude that although formation of PHF-like phosphorylated tau in the mammalian brain follows a certain hierarchy, affecting some neurons more frequently than others, it is not necessarily associated with impaired neuronal function and viability. This indicates a more general link between PHF-like phosphorylation of tau and the adaptation of neurons under conditions of a 'vita minima'.


Assuntos
Acetilcolina/metabolismo , Hibernação/fisiologia , Neurônios/fisiologia , Prosencéfalo/citologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Western Blotting/métodos , Proteínas de Ligação ao Cálcio/metabolismo , Colina O-Acetiltransferase/metabolismo , Cricetinae , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica/métodos , Fosforilação , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA